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Viscosity of Nitrogen, Hellum, Hydrogen, and Argon

*
from -100° to 25°C up to 150-250 Atmospheres

t
J. A. Grackl
Metcalf Chemical Laboratories
Brown Unlversity

Providence, Rhode Island
and

G. P. Flynn and J. Ross
Department of Chemistry
Massachusetts Institute of Technology

Cambridge, Massuchusettis

The range of a previously developed capillary-flow viscometer has
teen extended to -100°C,and the techniques of obtaining and determining
the attaimment of steady state have been improved. The viscosities of
nitrogen, helium, hydrogen, and argon have been measured by an absolute
method from -100° or -90° to 25°C and up to 150-175 atm (250 atm for N,
at 25°C). The accuracy is estimated to be 0.1 - 0.2%, but is samevhat
worse for Ar at -100°C. A mmber of empirical and theoretical amalyses of
the viscosity-density dependence have been made; while inconclusive, the
evidence tends not to support the presence of a logarithmic term in the
density expansion. Correlations of the second and the third virial

coefficients of viscosity have been made.
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We report here a series of absolute measurements of the viscosity
of four ases as a function of ' <arerature and density. The purpose of
this work is t0 obtain experimemntal data on this transport property in
regions where such information is unavailable or insufficient; to investi-
gate the temperature dependence of the virial coefficients for the viscosity;
and to provide, if possible, a test of proposed theories on the density
expansion.

We have in previous publicationsl’2 described our viscometer and given
results for a number of gases at temperatures from -50° to 150°C. The
present work extends the temperature range to -90°C for N2 and He and to

-lOOOC for H, and Ar, and repeats the previous measurements at -500 and

2
25°C for more closely spaced values of the density. As before, the upper
preésure limits are in the range 150-175 atm, except for N2 at 25°C, which
we studied to about 250 atm. The precision of the data is better than 0.1%,
and the results should be accurate to 0.1 - O.2%, with the exception of Ar
at -100°C (see discussion below).

At the time of publication of Rel. 1, there were hardly any other
published measurements of the viscosity of gases bvelow 0°% and above 1 atm,
and none of camparable accuracy. This situation has improved in recent years,

3

especially with Kao and Kobayashi'!s~” work on N, end He from -90° to SOOC and

2
Diller'sh on p-H2 below 100°K, as well as some extensive measurements of much
lesser accuracy mentioned velow. However, none of these papers contains
enough low-density data to give good values of the second virial coefficient
of viscosity which 1s of theoretical interest.s'g For this reason the
present measurements have been extended to lgwer pressures than our previous

l’)
work., ~’°




APPARATUS AND PROCEDURES

The apparatus and technique of measurement have been described in
Ref. 1, and only some changes need be noted here; for a more extensive
discussion, see Ref. 10. The apparatus 1s a constant-volume capillary-
flowv viscometer, in which an injector at 25°C drives gas at a known flow
rat.e through a capillary at the experimental temperature, the resulting
pressure difference being determined with a differential manometer.

The only major change is the addition of a fused-quartz precision
pressure gace (Texas Instruments Inc., Houston, Texas) in parallel
with the differential manometer. This instrument registers a pressure
difference by deflection of a quartz Bourdon tube. We had hoped to use it
for absolute measurements, but found that the variation of the index of
refraction of a gas with pressure affects the ontical path in the instru-
ment, so that its calibration varies with pressure. We therefore continued
to use the mercury manometer, but made use of the pressure gage to monitor
the approach to steady state.

Steady state is defined here as invariance with time of the pressure
diiference across the capillary during & run. Strictly speaking, such steady-
state behavior is impossible in a constant-volume apparatus, since the
vressure difference steadlly increases with time;ll however, we have shOWnlo
that this increase is nepligible for the dimensions of our apparatus. A
more seriocus problem is the relaxation of the transient process set in
motlon when a run be;sins: in particular, the rapid imnosition of the pressure
dift'erence is an essentially adiabatic vrocess, producing a temnerature

differerce across the capillary. For most of the measurements reported he:e,

we in tact observed the aiiainment or steady state (constant within c. 0,001




in. Hg) with the pressure gage as noted above. In addition, & rough but
adequate model of the transient behavior has been derivedlO and approx-
imately confirmed experimentally, to the extent that we believe steady
state to have been reached in virtually all the previous measurements

with this apparatus. (This applies even for injector flow rates up to 0.05
cm3/sec, although we now work only at < 0.03 cm3/sec.)

Three capillaries were used in the present work, all about 36 cm long
and 0.019 em in diameter. The last two were calibrated by the electrical-
resistance method, which we have found to be both more convenient and more
precise than the gravimetric method.12 More careful analysis of our previous
techniques with the latter method led us to the conclusionlo that the
viscosity values in Refs. 1 and 2 should be decreased by about 0.1%%. 13

For each capillary the value of the kinetic-cnergy constant m was
determined in the same way as beforel, excepnt that individual runs were
weichted in accordance with their a priori precision.lo Ve arain took an
unver Reynolds-number limit or 1600, below which we found no correlation
o{’ m with Reynolds number or other variables. For the three cavlllaries
the values of m obtained vere 1.199 + 0.013, 1.162 + 0.016, and 1.199 + 0.025;

these values were used to calculate the viscosities in Table I.




EXPERIMENTAL RESULTS

Our measured viscosities are given in Table I and plotted in Figs. 1-U4;
the deviations listed in the table indicate primarily the scatter of the
measurements at each pressure. The paragraphs which follow give our density
sources and same discussion of the results. More extensive camparisons

with previous work can bve found in Ref'. 10.

Nitrogen
. 1k . - 0 0 o
Nitrogen™ was studied up to 253 atm at 25°C; at -50" and -90°C, as
for the other cases, limits were chosen in the range 150-175 atm. The

results are shown in Fig. 1. The densities used were those of Michels

.

et al.l) at 25°C and of Canfield et all6 at lower temperatures. Our results
are in good a.greementl7 with our previous workl, and thus are still about

0.4% lower than those of Kestin and Leidenfrost18 and Michels and Gibson19

3

at QSOC and moderate pressures. Agreement with Kao and Kobayashi” at -50o

and -9OOC is within their precision. On the other hand, our disagreement

with Ross and Brownco is as reported before,l and Filipoova and Ishkin'scl

<>
measurcments deviave fram ours in the same way; Goldmnn'82° data at -61°

and -T8.>°C are 1-6% higher than values interpolatel from ours; and extrapo-

3

lation of our -90°C curve indicates that Zhdanova's > results for p > 0.38

;'jcm3 are as much as 20% higher.

Heliun

°, and -90°C; the results are shown

Holiwr' * was also studied at 25°, -50
in Fi~. (. The densitiec are based on the work of Miller et al.“b at ESOC

and of Canfield ggiil.lc clsevherce. HWe are amain in ood asreement with




our previous workl and about 0.3% lower than the results of Kestin et al.18

around 25°%¢. At -50° and -90°%C, Kao and Kobayashits>

results average
0.2-0.3% lower than ours. Golubev and Gnezdilov26 obtain viscosities
consistently steeper in the density than all the above work, but closely
resembling those of Ross and Browneo, which we regard as unrelia.ble.l

Kestin's results, Kao and Kobayashi's, and our's all tend to confirm the

existence of very shallow minima in tl.e viscosity-density curves.

Hydrogen
27 . .0 .0 o)

Hydrogen ' was studied at 257, -507, and -100°C; the results are
shovm in Fig. 3. The densities were all taken from Michels et al.28 Agree-
ment with our previous work” was excellent at 25°C and fairly rood (the
vresent data averaging slightly higher) at -50°C. Near 2500, Kestin and
Leidenfrost'518 results are about 1% higher than ours, but the recent work
of Kestin and Yataz9 is only about 0.5% higher, being thus in good agree-

30

ment with Michels, Schipper, and Rintoul. There is no other hish-precision

work in our lower-temperature range; both Golubev and Shepelevajl and
Rudenko and Slyusar 3 obtain results which increase with density samewhat

more rapidly than ours or Michels?',

Argon
jj "\O o 0\. "
Arson”” was also studied at &,7, -50, and -100°C; the results are shom

s

in Fiz. 4. The densities vere obtained from Michels, Wijker n¢ Wi'ler at

ESOC, and from Michels, levelt, andi de Grnaff’j at the lover tenperatures.

Agreement with our earlier uorkl is a7ein fajrly rood. As before, at PSOC

and moderate densities wve are about C.3% belovw Kestin et al.ltj and 0.2 above

Jo

Michels. Botzen, and Schuurman. Filinocva an? Ishkin's"1 low-temverature

. : : \ 0.
data deviate frua oury in the swe way as cor N . N =100 ¢ {cotherm requires

[N




special discussion, which rmust be postponed until the questions of density

dependence have been considered.

DENSITY DEPENDENCE OF VISCOSITIES

For each isotherm the viscosity was fitted to & least-squares power
series in the density:
N &+ bp+ cp2 + ... . (1)
These rits were tried for volynomials of different degrees, the "best"
rit (to all the points of the isotherm) beins chosen by & variety of
stetistical tests;jY the constants of the resulting ssries are listed
in Tablc IT. The standard deviations (o) of the fits are in each case

well under 0.2, excent for N, at —90°C and Ar at -100°C (for both of

2
which the individusl viscosities also have quite hich deviations), thus
confirmins our estimate of orecision (see bvelow).

The "best" t'its iust described, however, do not necessarily yield
the vbest values of the virial coefficients, as has teen shown by Fanley,
MeCarty, and Sen:ers.“ These authors found, by fitting series to data
subscts of increasin- density range, that (for examnle) a .cood linear fit
could be odbtained uv to some limiting density ey beyond which the data
deviated from linearity. but that <ood coefficients for a quadratic it
vere not octained telov some density anvreciably sreater than £y Mest of
our icotherm ranses {fall in such intermediste reions. ‘e have therefore

carried out such subset £its tor our data, and the resulting estimates f{or

the best of values of a, b, ¢ are ~iven {in Tavle TIT for N and Ar: the
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scatter was to great for satisfactory results by this technique for He
and HE' The values in Table IIT should thus be taken as our best estimates
of these virial coefficicnts, while those in Table II are test for interpola-

tion over cur entire density range.

For N2 and Ar fits were also made to the series

1 =&+ hp + 92 (cv + avsnp), (%)
which has bteen proposed on theoretinel ﬂﬁcunds.38 In each caselO the ;;00c¢-
ness of fit was no betl.er .. (usually) slightly worse than for the power
series (1) with an equal number of coefficients. Our work thus offers no
support for the logarithaic-term hypothesis, whereas Hanley, McCarty, and

Sengers9

did find some supnort in an analysis based primarily on thermal
conductivity data.
In aidition to our individual-isotherm fits, further tests were made
of the hypothesisl that the résidual viscosity is & function of density
only, i.e., that
nT,e) = n(T,0) + an(p) . (3)
This is an .mpirical correlation, the breakdown of which at low temperatures

and high densities has been fairly well established.h’23

However, where it
is valid it not only is quite useful Cor purposes of estimation, but holds
to a remarkable degree of accuracy. GSuch fits were therefore made, as
described in Ref. 1, for each of the gases studied; the standard deviations
of the "best" fits are 0.26uP for N, 0.14 for He, 0.14 for H,» 1.k for Ar
(0.46 with -100% omitted). ({See Ref. 10 for the constants in these series
and detailed comparison graphs showing to what extent the isotherms are in

fect parallel.) Except for Ar, these results are quite consistent

with the validity of Eq. (3) for our gases, within our experimental accuracy.




The Ar resuits, however, are problematical. Even the 250 ané -SOOC
results are definitely not parsllel within their own precisicn {the ESCC
data being parallel to Kestin's and Michels'! results), but the discrepancy
here is only of the order of 1 uP. The -lOOOC data, in contrast, dip as
mach as 4% below the values predicted from Eq. (3) and Michelst An(p), then
rise more steeply at higher densities. (It may be significant that the
arestest discrepancy, nearly 10 uP, is at 0.5 g/cm3, quite close to the
critical dernsity of 0.531 g/cm3.) The -SOOC deviations, while much smaller,
are in the same direction (as are the previous rcugh resultsl at -78.S°C).
As roted abcve, Eq. (3) is known to fail in the low-temperature liquid-
density rerge, but the previous evidenceh’23 indicates that the departure
is in the direction of higher values of An(p), the opposite of what we
otserve here; no effect of either kind appears in the present N2 data, at
similar reduced temperatures and densities. The poor precision of the -100°C
data is far too small an effect to account for this discrepancy, and further
low-temperature Ar measurements are clearly desicable.

To return to the individual-isotherm fits, we have reduced the values
of the second virial coefficient of viscosity, b, from Table III for N2
and Ar, Teble II for HE and He for comparison with the theories of Kim

*
and Ross8 and Hoffman and Curtissg7 The reduced values, b, are shown

n
in Fig. 5, along with the tvn theoretical curves; see Refs. 8 for compar-

5,6,39

ison with several other theoretical models, none of which f'it the

*
experimental data well. Also shown in Flg. 5 are the values of bq from

the data of Kestin and Leidenfrost,l8 to which the parameters in Kim and Ross's

theory were fitted; the present values are in general higher. but the shape

of the curve remains unchanged.ho The theory c¢f Kim and Ross seems reasonably
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correct, except for its failure to predict the negative velues of b for
He; on the other hand, that of Hoffman and Curtiss agrees well with the
He dsta but fails at lower reduced temperatures. These results can be ex-
plained as due to Kim and Ross taking insdequate account of renulsive
interactions and Hoifman and Curtiss!s neglect of orbiting, effects
important at high and low reduced temperatures respectively. The plateau
predicted by Kim and Ross for (l/T*);z 0.3 presumably is related to the
nearly temperature independent residual viscosity discussed above, although
the latter appears to apply even at densities where higher virial coefficients
are dominant.

In connection with the point just made, a correlation of the third
virial coefficient should te useful; to our knowledge, this has not been
attempted before. While no theory for the value of ¢ exists, the appro-

priate reduction is easily made by dimensional analysis: since we have8

LI : ()

(¢/m)?

¥*
where ¢ and € are Lennard-Jones parameters and T = kT/€, it is clear

bn(T)=

*
that a dimensionless cn should be given by

L
* |, % (l/(r)c

el (1Y) - 4 : (5)
(e/m3)2

il

If o is given in A and (¢/k) in %k, the reduction fector cy(e/mj)%

1 s
equals 54.92 o# (e/k MB)E uP-cm6/g£, where M is the molecular weight.

*
Values of cn were therefore obtained from our data as just described

*
for bn , the results being plotted in Fig. 6. Onece again a plateau is

obtained over most of the temperature range.
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ACCURACY

Our previous estima.te1 of experimental precision was 0.001 in.
Hgz in the pressure difference. Although in our low-temperature work we
were frequently restricted (by steady-state considerations) to pressure
differences much less than an inch, the reproducibility of the viscosities
(Table I) remained better than 0.1% in nearly all cases (even for H, at -100%,
where none of the pressure differences exceeded O.4 in. Hg). The exceptions
to the above statement are of course N2 at -90°C end Ar at -lOOOC. As
mentioned in the previous section, the standard deviations of our isotherm
least-squares fits are consistent with these estimates of precision. Our
average orecision is thus about 0.05% near rcom temperature, but becomes
worse than 0.1% at low temperatures and high densities (perhaps due to lack
of thermal equilibrium in the apperatus).

Our accuracy should be somewhat worse than this. For our low-temperature
N2 and He nesasurements, there is the possibilitylo of errors larger than
0.1% in the density ratios and thus the viscosities, due to our having
cambined densities from two different sources; the single-source HE and Ar
density ratios should be zood to about 0.026. Combining this with other
known sources of error in the calibrations and measurements, we estimate
our accuracy as 0.1 - 0.%.

However, accuracy can be established objectively only by camparison
with other work, and the situstion in this respect is unsettled. Our azree-
ment with vnrevious work with this apparatusl’2 is within the limits just
stated, but at —BOOC there are some apparently systematic discrepancieslo

at the outer range of these limits. The most precise other work available
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for camparison is that of Kestin et al.,18’29 done with oscillating-disc
viscometers, and the discusslons above have indicated that our results are
consistently several tenths of a percent lower than Kestin's; the possibility
of flaws in the theory of either or both instruments msy be worth investigat-

ing. We are in good agreement with Kao and Kobayashi3 for N2 and slizhtly

higher for He, while our discrepancies with Michels et 31.19’30’36

are not
consistent (both of these being capillary measurements). There are no

other dense-gas data sufficiently accurate for useful comparison, but it
should be noted that our l-atm viscosities (based on Table II), except for
He, are consistently an average of about 0.5% lower than the bulk‘of previous
worklo; since we deliberately extended our work to lower densities than
before, this can no longer be attributed to extrapolation error. The weight

of the evidence suzgests the possibility of systematic errors, but is not

sutficlently consistent to be conclusive.
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FIGURE CAPTIONS

Viscosity of nitrogen versus density: @ present results; o Flynn,
Hanks, Lemaire, and Rossl( points nearly coinciding with present
data indicated by @ ); X Keo and Kobayashi.3

Viscosity of helium versus density: @ present results; O Flymn,
Henks, Lemaire, and Rossl; Y Kao and Kobaya.shi.3

Viscosity of hydrogen versus density: @ present results; O Barus,
Afzal, Flynn, and Ross2; A Diller.l‘L

Viscosity of arson versus density: @ present results; Q Flynn,
Hanks, Lemaire, and Rossl (points nearly coinciding with present
data indicated by @).

5,6

*
Camparison of theoretical and experimental values of bn , the

reduced second virial coefficient of viscosity: present data,

® N, @H, VE, aAr Kestin snd Leidenfrost, > o N,

Q He, VH,, o4Ar, PO,, ©D,, +Ne, X Kr, * Xe. See
Refs. 8 for the method of calculating bn*; the exverimental values
for the present data are from Table IY for N2 and Ar, Table III
for He and H2.

Values of cn' , the reduced third virial coefficient of viscosity,
fram our data: @ N,, @ Fe, VH,, &Ar (fram Table II for N,

and Ar, Table III for He and H?-_‘)'
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TABLE IIY. Best estimates for first three virial coefficients of
viscosity, from fits to subsets of the present data.
8 b c
Gas T (uP) (uP-cm3/g) (uP-cm6/g2)
(%c)
N, 25 176.96 116.5 633
-50 140.49 111.6 655
-90 117.52 122.7 603
Ar 25 225.17 116.2 359
-50 175.19 103.2 363
-100 137.83 91.0 338
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